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Summary

Assessment of potential human health risks associated with environmental and other agents requires
careful evaluation of all available and relevant evidence for the agent of interest, including both data-rich
and data-poor agents. With the advent of new approach methodologies in toxicological risk assessment,
guidance on integrating evidence from multiple evidence streams is needed to ensure that all available
data is given due consideration in both qualitative and quantitative risk assessment. The present report
summarizes the discussions among academic, government, and private sector participants from North
America and Europe in an international workshop convened to explore the development of an evidence-
based risk assessment framework, taking into account all available evidence in an appropriate manner in
order to arrive at the best possible characterization of potential human health risks, and associated
uncertainty. Although consensus among workshop participants was not a specific goal, there was general
agreement on the key considerations involved in evidence-based risk assessment incorporating 21°
century science into human health risk assessment. These considerations have been embodied into an
overarching prototype framework for evidence integration that will be explored in more depth in a follow-
up meeting.

Keywords: risk assessment; environmental agents; population health; new approach methodologies;
evidence integration.
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Evidence-Based Risk Assessment Framework

1. Introduction and Background

Risk science has evolved into a well-established interdisciplinary practice incorporating diverse data and
methods in order to characterize population health risks and inform decision-making. Risk science has
benefitted from advances in biology and toxicology over the last decade, providing powerful new tools
and technologies — including high-throughput in vitro screening and computational toxicology — that can
be used to better assess risks to population health. Risk science has also benefitted from advances in
molecular and genetic epidemiology which, combined with concomitant advances in exposure science,
permit direct estimation of risk in human populations. These and other advances have been incorporated
into a framework for the next generation of risk science proposed by Krewski et al. (2014), which was
based on work completed under the US Environmental Protection Agency (EPA} NexGen program, with
input from a large number of stakeholders from North America and Europe.

An important aspect of the evolution of risk science is the desire to ensure that risk decisions are based
on the best available scientific evidence, with this evidence identified and evaluated in accordance with
appropriate processes and criteria. This trend is consistent with the evolution of evidence-based
medicine, which makes use of current best evidence in making clinical decisions about the care of
individual patients (Masic, Miokovic, & Muhamedagic, 2008; Sackett, 1997). More recently, the concept
of evidence-based toxicology has emerged under the leadership of investigators at the Johns Hopkins
Bloomberg School of Public Health (Stephens et al., 2013). Like evidence-based medicine, evidence-based
toxicology seeks to ensure that the best available data is used in toxicological risk assessment.

The present initiative seeks to build on the scientific advances covered above, and the trends towards
evidence-based decision making in multiple disciplines, to derive a framework for evidence-based risk
assessment that incorporates all relevant data needed to support risk decision-making in a transparent
and objective manner. The specific objectives of this project are:

(1) to develop a framework for evidence-based risk assessment describing how all relevant evidence
relating to a specific risk decision should be assembled and evaluated;

(2) to conduct case study prototypes to evaluate the utility of the framework and demonstrate its
application in practice; and

(3) tolay out a knowledge translation action plan to support the adoption and use of the framework
for evidence-based risk assessment in decision making.

2. Evidence for Causation

Establishing causality requires a careful evaluation of the available evidence for and against a causal
association between exposure and outcome. Evaluating evidence for causality can be a complex
undertaking, particularly in the presence of diverse sources of information which may report inconsistent
findings and which may be of unequal relevance or reliability. A systematic review can be used to
summarize the available evidence in a comprehensive and reproducible manner (Wang, Gomes, Cashman,
Little, & Krewski, 2014). Although not all systematic reviews are desighed to evaluate causality, there has
been a trend towards including causality evaluation as a component of systematic review in recent years.
Historically, the Hill criteria {strength, consistency, specificity, temporality, biological gradient, plausibility,
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84 coherence, experiment, and analogy) have provided useful general guidance on weighing the evidence
85 for causality (Lucas & McMichael, 2005), though they were originally designed with only observational
86 (epidemiologic) data in mind, and do not address other aspects of causality determination, such as
87 consideration of experimental data and integrating different sources of evidence. The grading of
33 recommendations, assessment development, and evaluation (GRADE) approach incorporates aspects of
89 the considerations for causality identified by Hill as well as other considerations, providing an approach
90  to evaluate the certainty of the body of evidence across the following domains: risk of bias, inconsistency,
91 indirectness, imprecision, publication bias, magnitude of effect, dose-response gradient, and opposing
92 residual confounding (Schunemann et al., 2008). On the other hand, the International Agency for Research
93 on Cancer (IARC), for example, has developed a detailed approach for identifying agents that can cause
94 cancer in humans, based on a careful evaluation of the available human, animal and mechanistic data
95  (IARC, 2019).

96 Rhomberg and colleagues (2013) recently reviewed 50 different frameworks that have been proposed in

97 different contexts in the interests of developing a “transparent and defensible” methodology for

98 evaluating the evidence for causation. This review identified four key phases for such assessments: (1)

99 defining the causal question and developing criteria for study selection, (2) developing and applying
100  criteria for review of individual studies, (3) evaluating and integrating evidence and (4) drawing
101 conclusions based on inferences. Although a specific framework that would be widely applicable in
102 different contexts was not proposed, this work serves to define important attributes of what a broadly
103 applicable framework might include. Five years later, another review of the body of knowledge presented
104  a framework with a similar four-step approach: (1) plan and scope the weight of evidence (WoE)
105  assessment, (2) establish lines of evidence, (3) integrate line to assess WoE, and (4) summarize conclusions
106 (Martin et al., 2018). While the specific principles, practices and approaches proposed by these two
107 reviews may differ, together they offer a general approach to evaluating evidence for causation that can
108 be refined and adapted as needed.

109 Several organizations have provided more detailed guidance for evaluating evidence of causation in
110  various circumstances, depending in part on the nature of the available data (predominantly
111 epidemiological or toxicological) and the risk decision context. Following a review of risk assessment
112 approaches used by the US EPA’s Integrated Risk Information System (IRIS), the US National Research
113 Council (2014a) identified systematic review and evidence integration as key components of a qualitative
114 and guantitative risk assessment paradigm for environmental chemicals. More broadly, the National
115  Toxicology Program Office of Health Assessment and Translation developed a Handbook for Conducting a
116 Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence
117 Integration. In the context of establishing dietary reference intakes (DRIs) taking into account chronic
118 disease outcomes, a committee of the National Academies of Sciences, Engineering, and Medicine ((The
119 National Academies of Sciences Engineering and Medicine, 2017) developed Guiding Principles for
120 Developing Dietary Reference Intakes Based on Chronic Disease, adopted GRADE (Guyatt et al., 2008) as
121 the preferred approach to both establishing evidence of causation as well as for intake-response
122 assessment.
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123 3. Sources of Evidence
124 In conducting evidence-based risk assessment, it is important that all available and relevant sources of
125 information be considered. Risk assessment may be informed by toxicological, epidemiological, clinical,

126 surveillance, mechanistic and other data, all of which need to be considered collectively in order to ensure
127 that the evidence base assembled to potentially support the assessment conclusions is appropriately
128 comprehensive.

129 An important aspect of evidence-based risk assessment is the amount of data that may or may not be
130 available to support the assessment. Cote and colleagues (2016) note that data-rich and data-poor risk
131 decisions necessarily require different approaches and offer advice on what might be done in a data-poor
132 situation where a risk decision must be made without the luxury of filling key data gaps.

133 In elaborating the proposed framework for evidence-based risk assessment, the strengths and limitations
134 of different sources of information will be identified, and their complementary role in informing the
135 overall assessment outlined. The framework will address both data-rich and data-poor risk decision
136 contexts and establish minimum data requirements to support evidence-based risk decision making.

137 3.1 Current Approaches to Evidence Integration

138  3.1.1EFSA

139 With a mandate to provide scientific expertise related to food and feed products in the European Union,
140  the European Food Safety Authority (EFSA) is among the global leaders in hazard identification and risk
141 assessment. Established in 2002 with funding from the European Union, EFSA has developed a variety of
142 frameworks and approaches to support transparency, rigor and quality in evidence-based risk assessment
143 for products under their remit (EFSA, 2010, 2014, 2015). While additional information on some of these
144 is provided in a separate publication in this issue (Aiassa, Merten, & Martino, 2020), a brief summary of
145  the 4-step framework for conducting a scientific risk assessment is included herein.

146  The 4-step process comprises “plan”, “do”, “verify” and “report” stages. Again, while additional
147 information on the structure and application of this framework is provided in a separate publication
148 (Aiassa et al., 2020), the approach can briefly be conceptualized as follows:

149 1. Plan: Formulate the key research question and (as relevant) associated sub-questions, outlining
150 the methodology for answering the question(s) in a protocol developed a priori

151 2. Do: Execute the methodology outlined in the protocol to collect, analyze and leverage data to
152 inform conclusions (specifics will depend on study design and type(s) of data being collected)
153 3. Verify: Compare the methodology taken with that outlined in the protocol, making note of any
154 deviations from the original plan

155 4. Report: Promote transparency through the publication of relevant methodologies, assumptions,
156 results and uncertainties

157  This approach has been piloted across EFSA with some success. For example, such an approach promotes
158 the impartiality, rigour and overall scientific value of the assessment process — as well as the resulting
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159 conclusions — by reducing the risk of bias from decisions made in light of the data collected (Munafo et
160  al.,, 2017; Shamseer et al., 2015). Conversely, it was found that the implementation of the proposed
161 approach among new or novice users was a resource-, effort- and time-intensive process, and EFSA
162 continues to work towards building capacity and expertise to deliver scientific assessments that are both
163 efficient and in line with current best practices in risk assessment. Nevertheless, EFSA’s prioritization of
164  the principles of impartiality, methodological rigour, transparency and public engagement point to the
165  value of the promotion and integration of such a framework within everyday practice, recognizing that
166 continued improvement should further advance EFSA’s ability to deliver high-quality scientific
167 assessments of relevance to public health promotion across the European Union.

168  3.1.2 EPAIRIS

169 Created in 1985 and located within the EPA Center for Public Health and Environmental Assessment, the
170 IRIS Program conducts chemical hazard assessments (EPA, 2018). These assessments examine the health
171 consequences of lifetime exposure to environmental chemicals and are both a primary source of certain
172 chemical toxicity information used in support of regulatory and non-regulatory decisions within EPA
173 program offices and regions, and important sources of information for other state, federal and
174 international organizations.

175  The IRIS approach for assessment development (illustrated as interpreted by the NAS in Figure 1) has
176 increasingly been framed through the lens of rigorous and transparent systematic review processes.
177  Assessment development is part of a larger seven-step process for assessment review, which can be
178  summarized as follows (NRC, 2011):

179 1. Complete draft IRIS assessment

180 2. Internal agency review

181 3. Science consultation on the draft assessment with other federal agencies and White House offices
182 4. Independent expert peer review, public review and comment, and public listening session

183 5. Revise assessment

184 6. A. Internal agency review and EPA clearance of final assessment

185 B. EPA-led interagency science discussion

186 7. Post final assessment on IRIS

187 Assessments are intended to inform decisions related to hazard identification and dose-response
188 assessments, which can be integrated with exposure assessments by EPA programs and regional offices
189 to characterize potential public health risks associated with exposure to an environmental chemical or
190  group of chemicals.
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192  Figure 1. IRIS approach for assessment development, as interpreted by the NAS (NRC, 2014a).

193 IRIS supports the principle of transparency in their decision processes, with publicly available summaries
194 and databases of chemical-specific evidence and assessment judgments provided since 1988 (EPA, 2018).
195 Progress towards the application of best practices in systematic review and risk assessment has
196 accelerated since 2011, when recognition of challenges in previous assessments motivated a commentary
197 on the IRIS assessment development process by the NAS that was outside of the scope of the chemical-
198 specific review (NRC, 2011). The resulting recommendations outlined a roadmap for a more systematic
199 review process that triggered numerous planned enhancements to the assessment development process,
200 including on-boarding of systematic review methodologies, adoption of the Health and Environmental
201 Research Online (HERO) tool, and increased public engagement (EPA, 2018; National Academies of
202 Sciences Engineering and Medicine, 2018).

203 In order to review changes and progress in the years following the 2011 NAS review, another committee
204  was convened in 2014 (NRC, 2014a); systematic review and application of best practices in evidence
205 integration were again identified as essential elements of environmental chemical human health
206 assessment. Further improvements to the rigor of the IRIS process are being implemented, as reflected in
207 a third assessment conducted in 2018 (National Academies of Sciences Engineering and Medicine, 2018),
208  which concluded that the IRIS process — while still evolving to adapt to new scientific methodologies and
209 data sources — had successfully undertaken reforms to improve the application and transparency of
210  systematic review methodologies in chemical assessments. Moving forward, it was noted that new tools
211 and approaches would be required to meet some of the outstanding recommendations from the 2014
212 assessment, “especially for incorporating mechanistic information and for integrating evidence across
213 studies” (National Academies of Sciences Engineering and Medicine, 2018, p. 12).

214 3.1.3 Health Canada

215  The Canadian Environmental Protection Act (CEPA), 1999, serves as the main federal policy under which
216 potentially hazardous environmental substances are assessed and regulated. Health Canada and
217 Environment and Climate Change Canada work together to assess the potential for risk to the
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218 environment and the general Canadian population associated with these substances and, as necessary,
219 develop policies and risk management measures for their control. Since its ratification twenty years ago,
220 over 23,000 environmental substances have been registered on the Canadian Domestic Substances List
221 (DSL) (Krewski et al., 2019). The Canadian Chemicals Management Plan (CMP), launched in 2006 based on
222 results of Categorization of the DSL and New Substances Notifications, further sought to evaluate the risk
223 associated with 4,300 prioritized chemicals prior to 2020. Our knowledge of chemicals and emerging
224  technologies continues to evolve. Therefore, moving forward it is important to continue to screen,
225 integrate and consider new information and the increasing complexities of chemicals that may have the
226 potential to cause harm to the environment or human health. Under the CMP, the identification of risk
227 assessment priorities (IRAP)* approach is the ongoing prioritization activity for systematically collecting,
228 consolidating and analyzing information for chemicals and polymers.

229 Given the ambitious timelines and number of chemicals to be assessed and addressed, an important
230 element in Health Canada’s success to date has been the development and application of the CMP Risk
231 Assessment Toolbox (Figure 2). This Toolbox was developed to delineate the various types of approaches
232 used to address the remaining substances or groups of substances prioritized under the CMP. To make
233 best use of available information, gain efficiencies and ensure the ability to focus on substances of highest
234 concern, the Risk Assessment Toolbox outlines three types of approaches that can be selected as
235 appropriate and used in a fit-for-purpose manner based on the complexity of the assessment required
236 (Health Canada, 2016):

237 e Type 1 Approaches use science-based policy responses such as referral of the assessment to a
238 better-placed federal risk assessment program or documentation that the substance has already
239 been addressed by an existing action or previous initiative under CEPA.

240 e Type 2 Approaches address substances using broad-based quantitative or qualitative approaches
241 and apply conservative {protective) assumptions. Formal CEPA conclusions may or may not be
242 made under section 64.

243 e Type 3 Approaches are applied for substances requiring a standard risk assessment approach
244 including both hazard and exposure and may consider qualitatitive and quantitative lines of
245 evidence in the determination of whether the substances or group of substances meet the criteria
246 under section 64 of CEPA 1999. Further, the Toolbox proposes three approach subtypes spanning
247 a continuum of complexity and methodology considerations in order to focus the risk assessment
248 efforts.

249 Select examples of the types of approaches are noted in Figure 2 and the scientific details are
250 described in the published CMP Science Approach Documents (SciADs). More information on the
251 approaches, application and results, including the Threshold of Toxicological Concern, Ecological Risk
252 Classification, and biomonitoring-based approaches can be found on the Chemical Substances
253 webpage (Health Canada, 2020)2.

https://www.canada.ca/en/health-canada/services/chemical-substances/fact-sheets/identification-risk-
assessment-priorities.htmi
2 https://www.canada.ca/en/health-canada/services/chemical-substances/science-approach-documents.html
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255  Figure 2. Chemical Management Plan Risk Assessment Toolbox {Health Canada, 2016).

256 As the Government of Canada embarks on the next phase of their chemicals assessment and management
257 program, new approach methods (NAMs) are being considered and developed for inclusion in the CMP
258 Risk Assessment Toolbox, particularly for Type 2 and 3 approaches, to rapidly and effectively identify the
259 potential for risk in support of the 21 century paradigm shift in risk science. To date, there has been a
260 high degree of success in advancing the use of new technologies and analytical tools through several case
261 studies that have illustrated the practical and positive impacts of integrating multiple lines of evidence,
262 including emerging science. A solid foundation and proof of concept has been illustrated for the
263 application of several important NAM and computational toxicology including the example presented at
264  the workshop on the use of Integrated Approaches for Testing and Assessment (IATA) for screening level
265  risk assessment (Webster et al. 2019).

266  As Health Canada continues to advance chemicals assessment and management, NAM will be considered
267 in the evolving risk assessment toolbox and incorporated into decision-making through the application of
268 robust methodologies that are context specific and fit-for-purpose.

269  3.1.4 ANSES

270  Over the period 2015-2016, the French Agency for Food, Environmental and Occupational Health &
271 Safety, ANSES (l'agence national de sécurité sanitaire alimentation, environment, travail) convened an
272 expert panel to provide a critical review and advice on best practices in evaluation of the weight of
273 evidence (“le poids des preuves”) in the hazard identification step of the risk assessment process. ANSES
274 is somewhat unique in this regard due to the breadth of their mandate. They sought to harmonize the
275 application of weight-of-evidence concepts across multiple hazardous domains including public and
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276 occupational exposures to chemical hazards, radiation hazards, nutrients and microbial hazards, but all
277 within the hazard identification stage. In this way, questions such as “Does exposure to this chemical cause
278 cancer?” and “Are these particular prions transmissible to humans?” would be answered in a rigorous and
279 harmonized approach. The result of the process was a report with several findings and recommendations
280  {Makowski et al., 2016).

281 Following the literature review, the panel described a four-step process that is similar in general structure
282  to other frameworks in the literature (planning, evaluation of lines of evidence, integration of lines of
283 evidence and reporting on the overall weight-of-evidence). The panel’s recommendations to ANSES were
284  described in line with this framework. Further work by ANSES has included, among other activities,
285 consideration of the role of quantitative approaches to weight-of-evidence.

286 3.1.5IARC

287 Several national and international health agencies have established programs with the aim of identifying
288 agents and exposures that cause cancer in humans. The JARC Monographs on the Identification of
289 Carcinogenic Hazards to Humans are published by the IARC and the World Health Organization (WHO).
290 Each IARC Monograph represents the consensus of an international working group of expert scientists.
291  The Monographs include a critical review of the pertinent peer-reviewed scientific literature as the basis
292 for an evaluation of the weight of the evidence that an agent may be carcinogenic to humans. Published
293 continuously since 1972, the scope of the IARC Monographs has expanded beyond chemicals to include
294 complex mixtures, occupational exposures, lifestyle factors, physical and biologic agents, and other
295 potentially carcinogenic exposures. To date, 120 [ARC Monograph Volumes are available on-line? and four
296 more are in preparation. After the forthcoming publication of Volume 124, more than 1000 agents,
297 mixtures, and exposures will have been evaluated. Among these, 120 have been characterized as
298 carcinogenic to humans, 82 as probably carcinogenic to humans, and 311 as possibly carcinogenic to
299 humans.

300 From the very beginning, there have been two criteria for consideration of an agent for evaluation: (a)
301 there is evidence of human exposure and (b) there are published scientific data suggestive of
302 carcinogenicity. For each agent considered, systematic reviews of the available scientific evidence on its
303 carcinogenicity in humans and in experimental animals are conducted by an international working group
304 of independent experts. Data on human exposure to the agent and toxicological data on pertinent
305 mechanisms of carcinogenesis are also reviewed. An overall evaluation that integrates epidemiological
306 and experimental cancer data as well as mechanistic evidence, most notably in exposed humans, is
307 reached according to a structured process. Agents with ‘sufficient evidence of carcinogenicity’ in humans
308 are assigned by default to the highest category, ‘carcinogenic to humans’ (IARC Group 1) whereas the
309 categories of ‘probably’ (Group 2A) or ‘possibly’ (Group 2B) carcinogenic to humans, or ‘not classifiable as
310  toits carcinogenicity to humans’ {Group 3) are assigned according to the combined strength of the human,
311 animal and mechanistic evidence. Agents may be placed in a higher category when the evidence for a

3 See https://monographs.iarc.fr/monocgraphs-and-supplements-available-online/

ED_012964_00016936-00009



Evidence-Based Risk Assessment Framework

312 relevant mechanism of carcinogenesis is sufficiently strong. The IARC Monographs classifications refer to
313 the strength of the evidence for a cancer hazard, rather than to the level of cancer risk.

314  The Preamble to the IARC Monographs describes the objective and scope of the Programme, the scientific
315 principles and procedures used in developing a Monograph, the types of evidence considered, and the
316 scientific criteria that guide the evaluations. The IARC Monographs are prepared according to principles
317 of scientific rigour, impartial evaluation, transparency, and consistency. The criteria defining those
318 principles have evolved during the early years of the Programme and were outlined in the first Preamble
319 (IARC, 1978), which has been refined and updated a dozen times since. In the recently revised Preamble
320 (IARC, 2019) mechanistic evidence has been given a place that is equivalent to that of epidemiological
321 evidence and evidence from animal studies. Mechanistic studies have gained in prominence, increasing
322 in volume, diversity, and relevance to cancer hazard evaluation. The major change in the new Preamble
323 is the introduction of systematic review of mechanistic data facilitated by the organization into Key
324  Characteristics (Smith et al., 2016), which is now common practice since Monograph Volume 112. A useful
325 overview of the major components of the most recent update of the Preamble is provided in a recent
326  publication by Samet and colleagues (2019).

327 3.2 New Approach Methodologies

328 Following publication of the US National Research Council report, Toxicity Testing in the 21°" Century: A
329 Vision and A Strategy {(NRC, 2007), there has been increasing emphasis on alternatives to animal testing
330 in toxicological risk assessment. A mid-term update on progress made towards the realization of this
331 vision over the original 20-year planning horizon has recently been prepared by Krewski and colleagues
332 (2019). The broad suite of tools and strategies offering viable alternatives to animal testing is now
333 referred to as nhew approach methodologies, or NAMs. The US Environmental Protection Agency (EPA,
334 2019) has developed a list of NAMs considered potentially relevant for evaluating chemical toxicity under
335 the Toxic Substances Control Act. These new approaches can be broadly classified as including:

336 e computational toxicology and bicinformatics;

337 e high-throughput screening methods;

338 e testing of categories of chemical substances;

339 e tiered testing methods;

340 e in vitro studies;

341 e systems biology; and

342 e new or revised methods from validation bodies such as ICCVAM, ECCVAM, NICETAM, and
343 OECDA.

344  The EPA list also includes a number of alternative test methods that have been validated by OECD, such
345 as the Bacterial Reverse Mutation Test (OECD Test Guideline 471) and the Performance-Based Test
346  Guideline for Human Recombinant Estrogen Receptor (hrER) in vitro Assays (OECD TG 493). The OECD

* ECCVAM: European Center for the Validation of Alternative Methods; ICCVAM: Interagency Coordinating
Committee on the Validation of Alternative Methods; NICEATM: NTP Interagency Center for the Evaluation of
Alternative Toxicological Methods; OECD: Organization for Economic Cooperation and Development.

10
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347  Toolbox provides a rich suite of computational tools for evaluating quantitative structure-activity
348 relationships (OECD, 2020).

349  The US EPA National Center for Computational Toxicology (NCCT) has recently developed a roadmap
350 outlining an approach for making greater use of new approach methodologies (NAMs) (Thomas et al.,
351 2019). Key elements of the EPA CompTox Blueprint include an emphasis on computational modeling and
352 high-throughput approaches to supplement traditional approaches in chemical assessments for
353 regulatory-decision making. On December 17, 2019, EPA hosted its First Annual Conference on the State
354 of the Science on Development and Use of NAMs for Chemical Safety Testing. (EPA is currently preparing
355 a summary of this meeting, that will be posted on their website when available.)

356 Andersen et al. (2019) have suggested a multi-level strategy for incorporating NAMs into toxicological risk
357 assessment practice, seeking to deploy new methods in a context specific manner. Level 1 in the proposed
358 strategy focuses on computational screening, with quantitative structure-activity relationships
359 (QSAR)/read across, cheminformatics, and threshold of toxicological concern approaches used to assess
360 bioactivity and high-throughput exposure modeling approaches used to evaluate potential human
361 exposure. Level 2 relies on high-throughput in vitro screening to assess bioactivity through
362  transcriptomics, high-content imaging and bioinformatics, along with judiciously chosen test batteries, to
363 evaluate bioactivity. Refined exposure models may be used, along with high-throughput in vitro to in vivo
364  extrapolation (HT-IVIVE), to estimate human doses. Level 3 invokes fit-for-purpose assays for bioactivity,
365 including lower throughput cell-based assays and consideration of metabolism. More specific exposure
366 models are employed, along with quantitative in vitro to in vivo extrapolation (q-IVIVE). Level 4 employs
367 more complex in vitro assays for bioactivity, advanced systems such as organ chips, and tailored in vivo
368 studies to confirm in vitro results. Tailored exposure models may also be employed at this level, including
369 physiologically based pharmacokinetic (PBPK) models for in vivo species extrapolation.

370  As envisaged by Andersen et al. (2019), level 1 approaches may be most useful in the context of priority
371 setting, with level 2 approaches more suited to screening level assessments. Level 3 approaches afford
372 greater insight into toxicity pathways and are consistent with the vision put forward by the US National
373 Research Council (NRC, 2007) for toxicity testing in the 21 century (TT21C). When required, level 4
374  approaches may provide additional data using more integrated assays at the biological system level. At
375 each level, margins of exposure (MOEs) based on a comparison of predicted human doses to doses at
376 which bioactivity is expected provide valuable information in support of context specific risk decisions.

377 As an example of a successful application of NAMs in risk assessment, OECD researchers have applied
378 performance-based approaches to assess the reliability and accuracy of in vitro predictions (OECD 2019).
379 Using estrogen receptor bioactivity models based on 18 HTS assays, 43 reference chemicals achieved a
380 balanced accuracy of 86-95%; similar validation exercises for androgen receptor activity and anti-
381 androgen activity also produced strong measures of validation performance. Encouraged by the success
382 of these in vitro approaches, the OECD has published three guidance documents on incorporating NAMs
383 into integrated assessment and testing approaches.

11

ED_012964_00016936-00011



Evidence-Based Risk Assessment Framework

384 New approaches to risk decision making are increasingly being used by regulatory authorities worldwide,
385 motivated in large part by the need for increased throughput in risk decision making. The US EPA used
386 Attagene assays including multiple gene targets such as PPARa and NRF2 to rapidly evaluate the relative
387 toxicity of eight dispersants in response to the Deepwater Horizon oil spill in the Gulf of Mexico in 2009,
388 and this represents an early practical application of NAMS in emergency risk decision-making by the US
389 EPA (Anastas, Sonich-Mullin, & Fried, 2010). With the diverse set of NAMs currently available, there are
390 unprecedented opportunities to apply new high- and medium-throughput assays in support of human
391 health risk assessment. The elaboration of strategies for deploying new approach methodologies in a
392 systematic manner, such as that suggested by Andersen et al. (2019), will be of great value in choosing
393 the most appropriate approaches to employ within specific risk decision contexts. While such efforts are
394 both needed and welcome, the increased use of NAMs by regulatory authorities will also require new

395 thinking on how to incorporate new types of data into weight of evidence evaluations.

396 4. Defining the Research Question

397 Formulating a clear and actionable research question creates structure in the approach to conducting
398 systematic reviews and developing health guidance (Guyatt, Oxman, Kunz, Atkins, et al., 2011) Within the
399 field of risk assessment, this question may be tailored for studies of exposure as a PECO question, which
400 is used to outline the Population, Exposure, Comparator, and Outcomes {(Morgan, Whaley, Thayer, &
401 Schunemann, 2018). Guidance has been provided to help users operationalize the PECO question, as this
402 informs many stages of the evidence review and quality assessment of the findings (Section 7). The
403 population may be defined based upon particular characteristics relevant to the exposure or outcome of
404 interest, including geographic, demographic, socioeconomic, or genetic and biological factors.
405 Approaches for identifying the exposure and comparator are discussed by Morgan and colleagues (2018).
406 Research question formulation may also benefit from consideration of the FINER criteria (feasible,

407 interesting, novel, ethical and relevant) (Farrugia et al., 2010).

408 5. Assembling the Evidence

409 Because of the diversity of evidence that could be considered in risk decision-making, it is essential to
410 have structured approaches for identifying and summarizing all relevant information. Systematic review
411 provides a powerful approach to meet this need. Guidelines for systematic review of clinical data have
412 been established by the Cochrane Collaboration, including the Preferred Reporting ltems for Systematic
413 Reviews and Meta-Analyses {PRISMA) guidelines (Moher, Liberati, Tetzlaff, & Altman, 2009). Although
414  guidelines for best practices in systematic review were developed first for summarizing clinical evidence,
415 similar guidelines are now being developed for other sources of evidence, including toxicology and
416 epidemiology. An overview of best practices in systematic review is provided in a separate article in this
417  issue (Farhat et al., 2020).

418  Within the field of environmental health in particular, there is a clear need for rigorous systematic review
419 methodologies. Although outside the scope of the present report, less intensive expedited or rapid
420 reviews {see Farhat et al., 2020) may be conducted when time and resources do not permit the completion
421 of a comprehensive systematic review. Review of the scientific evidence plays a critical role in decision-
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422 making about exposures to environmental chemicals by local and federal government agencies. However,
423 challenges exist where there are large data sets, variable study quality, conflicting evidence, or limited
424 information, which impedes integration and final conclusions. Approaches used to assemble and
425 synthesize evidence have evolved over the last three decades, with expert judgement increasingly
426 supported by guidance developed by national and international organizations. Improved methods of
427 chemical assessment that better reflect scientific knowledge have been articulated by the National
428 Research Council in several recent reports (NRC, 2008, 2009, 2014a, 2014b), in particular identifying
429 systematic review as an approach that could substantially improve the processes used to inform policy-
430 and decision-making regarding environmental chemicals.

431 Several systematic approaches have been evolving and undergoing applications to chemical assessment
432 at the National Toxicology Program (Rooney, Boyles, Wolfe, Bucher, & Thayer, 2014) and U.S. EPA (NRC,
433 2014a, 2014b). One novel approach to systematic review in environmental health is the Navigation Guide,
434 developed in 2009 through a collaboration between academic scientists and clinicians with the goal of
435 expediting the development of evidence-based recommendations for preventing harmful environmental
436 exposures (Woodruff & Sutton, 2011). The Navigation Guide was developed by drawing from the rigor of
437 systematic review methods used in the clinical sciences with modifications allowing for the unique
438 challenges faced with evidence streams specific to environmental health (i.e., animal toxicology and
439 human epidemiology data).

440  To date, the Navigation Guide has been applied in five published case studies as proof-of-concept
441 (lohnson et al., 2016; Johnson et al., 2014; Koustas et al., 2014; Lam et al., 2014; Lam et al., 2017; Lam et
442 al., 2016; Vesterinen et al., 2015) {Table 1). These case studies were some of the first to demonstrate that
443 systematic and transparent review approaches in environmental health were not only achievable but also
444  advantageous over existing methodologies such as narrative reviews.

445  The Navigation Guide systematic review methodology involves three main steps:

446 1) Specify the study question: Frame a specific research question relevant to decision-makers about
447 whether human exposure to a chemical or other environmental exposure is a health risk

448 2) Select the evidence: Conduct and transparently document a systematic search for published and
449 unpublished evidence

450 3) Rate the quality and strength of the evidence: Rate the potential risk of bias {i.e., internal validity)
451 of individual studies and the quality/strength of the overall body of evidence based on
452 prespecified and transparent criteria (typically outlined in a pre-published, publicly available
453 protocol). The Navigation Guide methodology conducts this process separately by evidence
454 stream (i.e., human and animal evidence). Ultimately, evidence is combined by integrating the
455 quality ratings of each of these two evidence streams. The end result is one of five possible
456 statements about the overall strength of the evidence: “known to be toxic,” “probably toxic,”

LIS

457 “possibly toxic,” “not classifiable,” or “probably not toxic.”

458 Table 1.: Five case studies of the Navigation Guide

Case study Findings |
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Johnson et al. 2014
Koustas et al. 2014
Lam et al. 2014

Developmental
exposure to
perfluorooctanoic
acid (PFOA)and
fetal growth
outcomes

Human and animal

Rated 18 epidemiology studies and 21
animal toxicology studies. Both evidence
streams were rated as “moderate” quality
and “sufficient” strength, leading to a final
conclusion that PFOA was “known to be
toxic” to human reproduction and
development.

Vesterinen et al.
2015

Fetal growth and
maternal
glomerular
filtration rates

Human and animal

Rated 31 human and non-human
observational studies as “low” quality and
two experimental non-human studies as
“very low” quality. All three evidence
streams were rated as “inadequate.” There
was insufficient evidence to support the
plausibility of a reverse causality
hypothesis for associations between
environmental exposures during
pregnancy and fetal growth.

Johnson et al. 2016

Exposure to
triclosan and
human
development or
reproduction

Human and animal

Rated three human studies and eight
experimental animal studies in rats
reporting hormone concentration
outcomes (thyroxine levels). Human
studies were rated as “moderate/low” and
animal studies were rated as “moderate.”
There was “sufficient” non-human
evidence and “inadequate” human
evidence, leading to the conclusion that
triclosan was “possibly toxic” to
reproductive and developmental health.

Exposure to air
pollution and

Rated 23 epidemiology studies. Evidence
was rated as “moderate” quality, leading

(PBDEs) and
IQ/ADHD
outcomes

Lam et al. 2016 ) Human only to the conclusion that there was “limited
Autism Spectrum . S
Disorder (ASD) evidence of toxicity” between exposure to
air pollution and ASD diagnosis.
Developmental Rated 10 epidemiology studies for
exposure to intelligence outcomes and 9 studies for
Polybrominated ADHD outcomes. Evidence was rated as
Lam et al. 2017 diphenyl ethers Human only “moderate” quality with “sufficient”

evidence for IQ outcomes and as
“moderate” quality with “limited”
evidence for ADHD outcomes.

Although various authors have suggested different data hierarchies for use in evidence integration (Burns,
Rohrich, Chung, 2012; Petrisor & Bhandari, 2007}, consensus on a single hierarchy for application across
diverse risk assessment contexts is lacking. As an example, Yetley et al. (2017) identified hierarchies of
evidence considering sources of information to support the establishment of dietary reference intakes
(DRIs) of nutrients present in the food supply. In this paradigm, well-conducted randomized clinical trials
(RCTs) represent the ‘gold standard’ in terms of obtaining unbiased information directly in human
populations. RCTs will not be available for most hazards of concern, though the hierarchy of evidence
pyramid shown in Figure 3 also identifies other valuable sources of information that are frequently used
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468 in risk assessment applications. Other variations of this hierarchy have also been suggested, such as that
469 discussed by Murad et al. (2016), which includes consideration of both study design and quality to allow
470  for departures from a strict a priori hierarchy of evidence.

Systematic reviews ant
meta-analyses of RCTs

I I

Quality of . .
evidence stkcif bias
Mochanistic shudine
Editoriais, sxpert oplnion
471
472 Figure 3. Hierarchy of evidence pyramid
473 [adapted from Yetley et al. (2017)]

474  The emphasis on the application of systematic review to assemble the data needed to support evidence-
475 based risk assessment is consistent with recommendations made by the US National Research Council
476 (NRC, 2014a) as part of its review of the US EPA’s IRIS program. As indicated in Figure 1, adapted from the
477 NRC review, systematic review represents a critical first step in assembling all human, animal, and
478 mechanistic data relevant to the assessment of potential risks associated with environmental health
479 hazards.

480  Additional guidance on the use of systematic review in risk assessment is available from numerous
481 sources. Farhat and colleagues (2020) trace the evolution of incorporating systematic review into
482 evidence-based risk assessment. Contemporary examples of the application of current methods in
483 systematic review across different domains — including clinical, epidemiological, and toxicological
484 applications — and provide a summary of available tools to support best practices in systematic review.

485 6. Synthesizing the Evidence

486 Once all relevant information has been assembled in a systematic review, this information needs to be
487 synthesized, qualitatively and sometimes quantitatively. Qualitative synthesis involves a determination as
488 to whether the exposure of interest constitutes a human health hazard. Within the context of evidence-
489 based risk assessment, this is done using an appropriate evidence integration framework. Should a
490 potential human health hazard be identified through the qualitative synthesis, the next step is to
491 determine whether the available data are sufficient to support an evidence-based quantitative estimate
492 of population health risk.

15

ED_012964_00016936-00015



Evidence-Based Risk Assessment Framework

493 6.1 Qualitative Synthesis

494 A number of frameworks for specific types of risk have been developed by different authorities. IARC, for
495 example, has elaborated and refined a well-known scheme for evaluating human carcinogenicity which,
496  over the last 50 years, has led to the identification of 120° agents as known causes of human cancer. (To
497 date, only one agent — caprolactam — of the more than 1,000 agents evaluated has been classified as
498 being probably not carcinogenic to humans, demonstrating the well-known scientific challenges in
499 establishing a negative outcome with high confidence). It is important to recognize that the IARC
500 framework for evaluating potential cancer risk to humans identifies cancer hazards, but generally does
501 not result in a quantitative estimate of human cancer risk.

502 Other schema for evaluating non-cancer hazards have also been proposed by other authorities. Rhomberg
503 and colleagues {(2013) recently reviewed 50 frameworks in the literature. A preliminary update to this
504 search from 2013 through to the present time is included in a separate publication in this issue (Saunders-
505 Hastings, Rhomberg, & Krewski, 2020). Meanwhile, Martin and colleagues (2018) recently conducted a
506 critical assessment of 24 approaches in an effort to develop a generalized approach.

507 6.2 Quantitative Synthesis

508 In many cases, a quantitative estimate of risk will be needed to complete the risk assessment. In the past,
509 quantitative estimates of risk have often been based on identifying a key study {or studies) that are
510 amenable to fitting an appropriate dose-response or exposure-response model. [Although outside the
511 scope of this report, sophisticated analytical techniques, such as Bayesian model averaging (Thomas et
512 al.,, 2007), can be used to incorporate results from multiple exposure-response models that are
513 compatible with the data.] These models can then be used to develop projections of potential population
514 health risk and associated uncertainty under specified exposure scenarios. These models can also be used
515  toidentify a point of departure (PoD) on the dose-response curve that can be used to establish a reference
516  value (RfV) or other toxicity benchmark to serve as a guideline for human exposure (EPA, 2012). The PoD
517 can also be used to establish a margin of exposure (MoE) reflecting the ratio between the toxicity
518 benchmark and estimated or predicted human exposure levels (Thomas et al., 2013).

519 When multiple studies with quantitative information on dose-response are available, it may be possible
520  to combine the results of these studies. As discussed below, combined analysis of the primary raw data
521 may be possible when the study designs are compatible. When the primary raw data are not accessible
522 for analysis, meta-analysis of summary risk estimates from the individual studies is often done. Another
523 potentially useful approach to combining data involving different toxicological endpoints is categorical
524 regression. Each of these approaches is described briefly below.

525  6.2.1 Combined Analysis

526 When access to the primary raw data from a series of related studies is available, a combined analysis of
527 the raw data can be conducted. Having access to the raw data affords maximum flexibility in modelling

5 https://monographs.iarc.fr/agents-classified-by-the-iarc/
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528 exposure-response relationships across the studies being combined, as well as an opportunity to evaluate
529 the effects of potential modifying factors included in the original studies. For example, Krewski and
530  colleagues (2006) conducted a combined analysis of the primary raw data from a series of case—control
531 studies on residential radon and lung cancer risk, , demonstrating for the first time a strong association
532 between radon and lung cancer in residential settings.

533  6.2.2 Pooling Epidemiological Data

534  There are various methods for pooling data from epidemiological studies, each with its own strengths and
535 limitations. Combining primary data from individual studies to vyield a large dataset — referred to as
536  pooled analysis when used in epidemiological studies — has many advantages. In particular, the increase
537 in sample size allows for more precise calculations of risk estimates (Tobias, Saez, & Kogevinas, 2004).
538  The large sample size can also improve the statistical power to allow the assessment of risks in specific
539 subgroups or restricted subsets of data that would not be possible in smaller data sets of individual
540 studies. These strengths of pooling data make it appealing when investigating effects of rare exposures or
541 risk factors of diseases that have long induction periods, such as cancer {Cardis et al., 2011; Fehringer et
542 al., 2017; Felix et al., 2015; Gaudet et al., 2010; Kheifets et al., 2010; Peres et al., 2018; Wyss et al., 2013).

543 Although pooling primary sources of data can be expensive and time-consuming and requires the
544 agreement to data-sharing and cooperation of investigators from multiple study centers, the approach
545 does not have the limitations listed above. Pooling primary data can allow investigators to make a broader
546 range of conclusions compared to meta-analyses that are based on published study findings (Checkoway,
547 1991). This approach also has other advantages; it allows having unified inclusion criteria and definitions
548 of variables across the centers. It also allows the use of the same statistical model on all of the combined
549 data. This is particularly important since individual studies commonly adjust for different confounders in
550  their analysis {Friedenreich, 1993). Standardizing the methods used reduces potential sources of
551 heterogeneity across the studies. Finally, the large sample size allows examination of rare exposures and
552 performing subgroup analyses that would not be feasible in individual studies due to low statistical power.

553  This type of analysis can be done retrospectively or prospectively. Prospective planning has the added
554  advantage that it allows co-investigators to plan ahead and ensure uniform methods are used for data
555 collection and reporting (Blettner, Sauerbrei, Schiehofer, Scheuchenpflug, & Friedenreich, 1999).
556 Nevertheless, many pooled analyses have been conducted retrospectively after individual studies had
557 reported their findings.

558 For example, as mentioned above, Krewski and colleagues (2006) retrospectively combined primary data
559 from seven case-control studies in North America. Their pooled findings, based on 4,081 cancer cases,
560 indicate an association between residential radon and lung cancer, although findings from the individual
561 case control studies had provided inconsistent evidence on the risks of lung cancer. The pooling of data
562  further allowed analysis on subsets of the data with more complete radon dosimetry in the most critical
563 exposure time windows. The investigators also performed dose-response analyses based on the
564 histological type of lung cancer (Field et al., 2006). These analyses had not been possible in the prior
565 analyses of each study data individually.
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566 Similar radon risk analyses were conducted by Darby and colleagues (2005) from 13 European case-
567 control studies on 7,148 lung cancer cases. The large sample size achieved by pooling provided sufficient
568 statistical power to detect moderate risks that could not be detected in individual studies.

569  To perform a pooled analysis of primary data from multiple studies, Friedenreich (1993) suggests the need
570  for a strict protocol. Further, the author details eight steps to follow for pooling data and analysing the
571 combined dataset: 1) identify relevant studies; 2) select (sufficiently similar) studies from which to pool
572 data; 3) combine the data after obtaining each study data from original investigators; 4) estimate study-
573 specific effects using logistic regression; 5) examine the homogeneity of study-specific effects; 6) estimate
574 pooled effects (if study-specific effects are homogenous); 7) explain heterogeneity between studies (if
575 studies-specific effects are not homogenous); and 8) perform sensitivity analyses to examine the
576 robustness of the pooled effects.

577  6.2.3 Meta-Analysis

578 Meta-analysis has become a popular and useful technique for developing a more pragmatic estimate of
579 risk by quantitatively combining compatible study-specific risk estimates. Meta-analysis requires that the
580 designs for the studies being combined are reasonably compatible, and that the study results do not
581 demonstrate a high degree of heterogeneity. While meta-analysis has been applied in toxicological risk
582 scenarios, it is predominantly applied in cases where human data is available.

583 When pooling data, primary data from individual studies are combined to provide a much larger dataset
584  thatis then analysed to obtain an overall effect estimate. This is the main difference compared to meta-
585 analyses, where effect estimates reported from individual studies are combined into one overall effect
586 estimate. Meta-analyses are very common in epidemiology, and have many advantages including low
587 associated costs, time efficiency, and the ability to provide an overall quantitative assessment of risk and
588 uncertainty (Friedenreich, 1993). However, limitations do arise in instances where significant
589 heterogeneity between studies is present due to variations in study design, eligibility criteria, exposure
590 and outcome ascertainment and statistical analyses (Blettner et al., 1999). Meta-analyses are also limited
591 by the information provided in the publication and may preclude dose-response analysis and specific
592 subgroup analyses (Friedenreich, 1993; Tobias et al., 2004).

593 Recent examples of informative meta-analyses of epidemiological data include analyses of the association
594 between exposure to diesel exhaust and fung cancer (Vermeulen et al.,, 2014) and analyses of the
595 association between talc and ovarian cancer (Taher et al., 2019). Vermeulen and colleagues (2014)
596 conducted a meta-analysis of three epidemiological studies of the association between occupational
597 exposure to diesel exhaust emissions in the mining and trucking industries and lung cancer, using
598 elemental carbon as an indicator of exposure to diesel exhaust. This analysis provides a possible approach
599  to characterizing the exposure-response relationship between diesel exhaust and lung cancer risk (HEI
600 Diesel Epidemiology Panel, 2015). Taher et al. (2019} conducted a meta-analysis of 27 case-control and
601 cohort studies, with limited evidence of study heterogeneity, to estimate the odds for ever use of talc to
602 be 1.28 (95% Cl: 1.20-1.37). An important component of this work was the conduct of a series of subgroup
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603 analyses, focusing on the nature of talc use, tumor characteristics and the possible effect of menopausal
604 state, hormone use and pelvic surgery.

605  6.2.4 Categorical Regression

606 Categorical regression can be used to combine data from diverse sources, including different (both
607  toxicological and epidemiological) types of studies and studies focusing on diverse health endpoints. This
608 is done by developing a severity scoring system to place different adverse health outcomes on a common
609 severity scale, following which categorical regression modelling of the severity scores can be done. In
610  analyses involving both animal and human data, adjustments for inter-species differences and sensitivity
611 can be included in the model.

612  The US EPA has invested considerable effort in developing a software package called CatReg to perform
613  categorical regression (EPA, 2017). More recently, Milton and colleagues (2017a; 2017b) have extended
614  the US EPA CatReg approach to permit modelling of U-shaped dose-response curves for essential
615 elements that demonstrate toxicity due to both excess and deficiency. Yetley and colieagues (2017) have
616 identified categorical regression as a potentially useful tool for combining data from multiple sources in
617 establishing DRIs for nutrients. To illustrate the use of categorical regression in practice, Farrell and
618 colleagues {2020) provide a description of the application of this technique to rich datasets on two
619 essential elements — copper and manganese — that include extensive human and animal data.

620  6.2.5 Combining Outcomes with Different Severities

621  Assessment of chemical hazards is based on specific critical health effect(s). As an extension, Sand and
622 colleagues (2018) introduced a method for characterizing the dose-related sequence of the development
623 of multiple (lower- to higher-order) toxicological health effects caused by a chemical. A “reference point
624 profile” was defined as the relation between benchmark doses (BMDs) for selected health effects, and a
625 standardized severity score determined for these effects (Figure 4). For a given dose of a chemical or
626 mixture the probability for exceeding the reference point profile can be assessed. Following severity
627  weighing an overall toxicological response (expressed in terms of the most severe cutcomes) at the same
628 dose can then be derived by integrating contributions across all health effects. Conversely, dose
629 equivalents corresponding to specified levels of the new response metric can also be estimated. The
630 reference point profile is a cross-section of the dose-severity-response volume, and in its generalized form
631  the method accounts for all three dimensions {dose, severity, response). In this case, the new response
632 metric becomes a proxy for the probability of response for the most severe health effects, rather than the
633 probability for exceeding the BMD for such effects.

634  Conceptually, there are similarities between this method and categorical regression (e.g., Hertzberg and
635 Miller, 1985; Dourson et al., 1997: Milton et al., 2017b). The latter methods have for example been used
636  to calculate the probability for a given severity category. The method introduced by Sand and colleagues
637 (2018} provides this type of output simultaneously across all categories. In addition, as indicated earlier,
638 probabilities are integrated over the entire severity domain to produce an overall response expressed in
639  terms of the most severe health effects. Integration across different severities requires weighting, and a
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640 developed system with nine severity categories {C1 to C9) is therefore mapped to a quantitative severity
641  scale (S=0to S=1) (see Figure 4).

642 Using data from the U.S. National Toxicology Program 2-year studies, Sand and colleagues (2018)
643 demonstrated that results derived by the method are largely insensitive to the choice of model used to
644  describe the reference point profile. The proposed method also appears to be robust with respect to
645 minor and moderate changes in severity classification of BMDs. Further analyses indicate that the
646 interpretation of effective doses or points of departures, based on individual health effects, may change
647  when considering health effects jointly along the lines proposed (Sand, 2020). This influences the
648 consideration of equipotent doses for different chemicals, and the concept of acceptable response levels
649  for individual effects. In addition, results suggest that estimation of exposure guidelines, or similar, by the
650 proposed method may be sufficiently accurate and precise even if data for the most severe health effects,
651 associated with the highest severity categories, are omitted (Sand, 2020). The method may therefore
652 enable derivation of a surrogate for the probability of severe health effects, and/or the probability for
653 exceeding corresponding BMDs, also in the case of using data on comparatively “mild” effects only.
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655 Figure 4. Technical illustration of the reference point profile, which is a cross-section of the dose-severity-
656 response volume. The solid s-shaped (Hill} curve describes the relation between the BMD for selected
657 health effects, and the severity of toxicity (§) determined for these effects. The severity for individual
658 health effects is first determined categorically according to a hierarchical classification scheme: the
659 classification performed by Sand and colleagues (2018} of considered health effect in the liver is
660 illustrated. The nine-graded categorical scale, C1 - C9, is then mapped to a quantitative scale that range
661 fromS=0to S =1. The default mapping distributes severity categories symmetrically across S (see Sand
662 et al., 2018 for details). The variability is assumed to be normally distributed on the log-scale with constant
663 variance. Red areas describe probabilities for exceeding the reference point profile at exposure level, E,
664  corresponding to the vertical (red) line. Here, E corresponds to an integrated response of 0.25 (50%), and
665 E intersects the solid curve at § = 0.71. The midpoint of C6 thus represents the center in terms of the new
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666 response metric. This point of calibration is approximately independent of the model parameters (Sand
667 et al., 2018), and C6 also is regarded as the breaking point between reversible and irreversible effects.
668 Association of C6 to a 50% response is therefore considered as a plausible starting point for severity
669 weighting. A non-linear severity-weight, w(S) # 5, will indirectly modify the default mapping. This allows
670  the midpoint of the system, corresponding to a 50% response, to be lower (C1 - C9 skewed upward) or
671 higher (C1 - C9 skewed downward) than the midpoint of C6, which would also increase or decrease the
672 response associated with E, respectively.

673  6.2.6 Structured Expert Elicitation

674  Structured expert elicitation (SEE) is a well-established approach for gauging expert opinion, of particular
675  value in contexts characterized by limited data, low risk and substantial uncertainty (Aspinall, 2008, 2010;
676 Cooke, 2013, 2015). One challenge associated with expert elicitation is the risk or perception of overly
677 subjective expert input. For example, Schiinemann and colleagues (2019) point to the need to distinguish
678 expert-elicited evidence from expert opinion, relying on evidence to inform decision-making. Concerns
679 about expert bias are reduced through an anonymized elicitation procedure with a formal, transparent,
680 and auditable processing of responses and a performance-based weighting scheme for pooling
681  judgements. This encourages experts to be open-minded in responding with their estimates and
682 uncertainties, based on their own personal knowledge, expertise, and experience.

683 There are nearly 100 specific SEE methodologies, which may concern a generic scenario or circumstances
684 related to the assessment or management for a specific project scenario (Colson & Cooke, 2017; Cooke &
685 Goossens, 2008). Generally speaking, the method quantifies subjective judgements through the
686 weighting of expert responses in order to generate a collective view represented as a median value and
687 accompanying uncertainty distribution. An expert panel between four and twenty members is considered
688 adequate to obtain meaningful results (Colson & Cooke, 2017).

689  The elicitation may be convened either in person or through video conferencing (thus also reducing the
690 carbon footprint of the event), with experts being offered the opportunity to comment on the process,
691 decline to answer specific questions or withdraw from the exercise entirely. Per Cooke’s Classical Model,
692  a SEE should include the following steps (Cooke, 2013, 2015):

693 e A draft version of the elicitation instrument is reviewed by independent experts (modifications
694 as necessary).
695 e The elicitation instrument is introduced to the expert participants, with a thorough review of the
696 relevant terms and conditions. Questions are permitted throughout the process, such that the
697 problem, context, definitions, and question content are understood. Refinements may be made,
698 with the goal of ensuring the same understanding among experts.
699 e Experts complete each question individually using pre-formatted response tables, which are
700 submitted by the experts to the investigators upon completion. Experts first complete a series
701 of “calibration” questions on technical issues for the topic of interest. This calibration exercise
702 enables distinct performance weights to be given to individual experts based on their accuracy
703 and ability to judge uncertainties.
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704 e Experts then respond to numerical uncertainty distribution “target” questions of the same
705 format, with a central value (median), best judgement (50th percentile) and the 90% credible
706 range (lower limit 5th percentile and upper limit 95th percentile).

707 e Following the analysis, another facilitated meeting or video conference is arranged, providing the
708 expert panel with an opportunity to review preliminary findings. Another round of modification
709 and elicitation may be conducted if necessary.

710 7. Evidence Assessment & Presentation of Findings

711 7.1 Determining certainty in the evidence based on the GRADE approach

712  The evidence identified by systematic reviews can be assessed collectively in a framework such as that
713 described for GRADE (Guyatt, Oxman, Kunz, Atkins, et al., 2011). This moves forward the individual study
714 assessment, so that end-users understand the strengths and limitations (i.e. certainty) across the body of
715 the evidence. Informed by Bradford Hill criteria and the iterative development of evidence-based
716 medicine, the GRADE approach for evidence assessment evaluates the certainty in the evidence based on
717  the following domains that may decrease one’s certainty in the body of evidence: risk of bias {i.e. study
718 limitations), inconsistency (i.e. heterogeneity), indirectness, imprecision, and publication bias (Balshem et
719 al.,, 2011; Guyatt et al., 2011). In addition, for nonrandomized studies, one’s certainty of the body of
720  evidence may be increased by the following domains: magnitude of effect (e.g. large or very large effect
721 size), dose-response gradient, or opposing residual confounding (an effect seen in the opposite direction
722 expected from confounders).

723  These eight domains can help assessors understand the body of the evidence across outcomes as it relates
724  to the research question of interest (i.e. our PECO question, section 3}, even when the evidence comes
725  from non-human studies. As mentioned previously, five domains relate to lowering one’s certainty in the
726 body of evidence. Risk of bias is informed by the individual study assessments performed as part of the
727 systematic review. While GRADE was originally developed in the context of randomized control trials, its
728 application has expanded to include risk of bias related to randomized and nonrandomized intervention
729 and exposure studies {Guyatt, Oxman, Kunz, Atkins, et al., 2011; Morgan et al., 2019; Schunemann et al.,
730 2019). When considering inconsistency across the pooled evidence, the distinction is made between
731 explained inconsistency or unexplained (Guyatt, Oxman, Kunz, Atkins, et al., 2011). Indirectness, based on
732 how directly the identified evidence answers the research question, is a key element for evidence
733 integration (Guyatt, Oxman, Kunz, Woodcock, et al., 2011). Information used to inform indirectness would
734 be, when the population of interest is humans, how directly can evidence from animal experiments or
735 other types of research (in vitro or in vivo) be extrapolated or help inform the association between an
736 exposure and outcome. Some research has explored how the domain of indirectness relates to evidence
737 from pre-clinical studies (e.g. research from animals) (Hooijmans et al., 2018). Imprecision considers
738 whether the overall estimate of effect is precise or due to random error. Lastly, publication bias
739 summarizes whether or not all the studies that have been conducted were captured in the review.

740  When considering the three domains that allow for increased certainty across the body of evidence, the
741 magnitude of effect captures the extent of the observed effect, dose-response considers the exposure-
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742 effect relationship, and opposing residual confounding captures whether or not the worst-case scenario
743 still allows for drawing strong conclusions (Guyatt, Oxman, Sultan, et al., 2011).

744  Operationalizing these domains relates to the understanding of the relationship between the research
745 guestion and the evidence extrapolated to inform the findings to that question. In most instances, this
746 can be informed by exploring the various sources of indirectness. For example, one may be interested in
747 humans as a population. For example, humans who are exposed to a carcinogen with the interest in
748 exploring how this exposure would relate to an adverse outcome of interest. Within GRADE, the best
749 available evidence is understood to come from human studies; however, indirect evidence from other
750 sources (animal, mechanistic) is also considered. The exposure or comparator could also introduce an
751 element of indirectness. To apply this to a review, five paradigmatic scenarios exist (Morgan et al., 2018).
752 In one particular scenario, little is known about the association between the exposure and outcome,
753 therefore the assessment seeks to define that relationship. In this situation, mechanistic data or modelling
754 may be utilized to see whether or not we have some confidence in a statement between the exposure
755 and outcome. Indirectness may also be identified within the outcome, as to whether or not out evidence
756 is extrapolated from a surrogate.

757  The starting point when determining the certainty across the body of evidence for an outcome typically
758 starts at high certainty for RCTs and low certainty for nonrandomized studies. However, with the
759 development of risk of bias instruments applied to nonrandomized studies that use a standardized scale
760  from RCTs, the level of certainty could be increased (Morgan et al., 2019; Schunemann et al., 2019).

761 7.2 Relevance to Risk Assessment

762 Characterizing the relationship between exposure levels and the health impacts they exert has been the
763 focus of much research conducted by risk assessors, health practitioners, and regulatory experts in
764 developing health protection programs to establish safe intake levels for humans (Krewski et al., 2010;
765 Stern et al., 2007). Any substance, including but not limited to chemicals, nutrients, vitamins, or
766 pharmaceuticals, has the potential to be harmful to humans if they are exposed to too much or too little.
767  To establish a range of allowable intake for a substance that may be harmful to humans in excess or
768 deficient amounts, it is necessary to strike a balance between the health impacts exerted by exposures
769 across the excess-deficiency spectrum. The challenge of identifying an acceptable medium between
770 excess and deficiency motivates the development of exposure—response models; they provide the
771 foundation for identifying recommended levels of exposure to essential and nonessential substances
772 {Krewski et al., 2010).

773 The US EPA developed the concept of a RfV for toxic substances, which has been widely accepted and
774 used in practice to prescribe safe intake levels for humans. The RfV can be derived from a single key study
775 that considers one critical health effect and is defined by applying uncertainty or adjustment factors to
776 the no-observed-adverse-effects level (NOAEL), which corresponds to the level of exposure that does not
777 result in a significant increase in the risk of adverse effects in the exposed group when compared with
778  controls (Barnes & Dourson, 1988). Currently, the benchmark dose (BMD) is more often used as the basis
779 for determining the RfV. The BMD was introduced by Crump (1984) and uses a mathematical model to
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780 identify the dose corresponding to a specified increase in response. It has also been used as a point of
781 departure on the dose-response curve for establishing human exposure guidelines (European Chemicals
782  Agency, 2013). More recently, the signal-to-noise crossover dose {SNCD), defined as the dose at which
783 the uncertainty in the biological signal is indistinguishable from the background noise, has been
784 introduced as an alternative to the BMD (Sand, Portier, & Krewski, 2011). Categorical regression has also
785 been applied in dose—response modelling for health risk assessment (Allen, Zeiger, Lawrence, Friedman,
786 & Shipp, 2005; Chambers et al., 2010; Gift, McGaughy, Singh, & Sonawane, 2008; Haber, Strickland, &
787 Guth, 2001; Milton et al., 2017a; Milton et al., 2017b). Categorical regression facilitates the inclusion of
788 multiple studies in an exposure—-response model by applying a severity scoring scheme to standardize
789 different outcomes reported in each experiment. Further discussion of these techniques may be found in
790 previous publications {(Milton et al., 2017a; National Research Council (US) Committee on Improving Risk
791  Analysis Approaches Used by the US EPA, 2009; National Research Council (US) Committee on Risk
792 Assessment of Hazardous Air Pollutants, 1994; Yetley et al., 2017).

793 8. Uncertainty Analysis

794 8.1 Assessing Uncertainty in Risk Assessment

795 In a great majority of situations of interest, risk assessment is confronted with a wide range of
796 imperfections in the evidence base that collectively constrain the ability to provide a certain answer with
797 respect to causality, and even if causality is assumed, a certain estimate of the level of risk to be expected
798 in the exposed population of interest. The level of uncertainty in the level of risk can span multiple orders

799 of magnitude, even when excluding uncertainty in causality.

800 In general, guidance documents that prescribe best practices in risk assessment suggest that a formal
801 treatment of uncertainty is a fundamental component of risk assessment processes (NRC, 2009). The
802 sources of uncertainty (i.e., the limitations of the evidence based) can be from a wide spectrum of sources,
803 including:

804 e inability to infer a causal relationship due to conflicting evidence within the same line of evidence;
805 e inability to infer a causal relationship due to conflicting evidence from different lines of evidence;
806 e lack of testing data for numerous types of possible health outcomes;
807 e testing data which is available but of questionable relevance to human health;
808 e uncertainty in what to predict at low doses given data restricted to much higher doses;
809 e uncertainty in the fate and transport of substances and the resulting environmental
810 concentrations in near- and far-field exposure situations;
811 e the levels of exposure in the population of interest to the environmental media or product in
812 question;
813 e uncertainty stemming from imprecision of knowledge of mechanisms of action; and
814 e uncertainty stemming from imprecisions in goals such as the percentile of the population to be
815 protected by an exposure threshold value.
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816 Each of these forms of uncertainty can be dealt with in a piece-wise fashion with the uncertainty
817 characterization limited to an interim conclusion within different stages of the risk assessment process. In
818 addition, the means of characterizing uncertainties can vary from a narrative approach {explaining the
819 limitations or extent of doubt of any conclusions and the basis for that doubt), to qualitative (labelling
820 unhcertainty as high, medium, low) to categorical (e.g., causal, likely to be causal, suggestive evidence of
821 causal, etc.) through to quantitative characterizations {providing a probability estimate for causality,
822 providing a confidence interval on an estimated value, or explicitly defining or computing a probability
823 distribution representing uncertainty in an estimated or computed value).

824  The various practices employed determine, partly, to what extent a final and overall characterization of
825 uncertainty can be rendered, even if the uncertainties in each part of the risk assessment are relatively
826 complete. Fully quantitative estimates of uncertainty in each part of a risk assessment can be propagated
827 in a reliable way to capture the overall uncertainty. However, it is currently rare that practitioners capture
828 uncertainty in a quantitative way in all the ways that the inadequacies of the evidence base might
829 contribute to the overall uncertainty in a risk assessment.

830 For the three main risk assessment steps preceding risk characterization, recent methods have emerged,
831 some have long existed and other methods need to be developed to allow for the careful and
832 comprehensive treatment of uncertainty in risk assessment.

833 In hazard identification, progress is being made in minimizing some sources of uncertainty due to the
834 increasing use of formal systematic methods in the gathering and treatment of evidence (e.g., explicit
835 criteria for inclusion and quality scoring of studies) within the principal lines of evidence. However,
836 methods to formally capture the uncertainty and implications of imperfections in the evidence base when
837 integrating evidence across evidence lines appears to have limited formal methodological support, often
838 relying on expert judgement and consensus-based processes in the ultimate weighing of evidence.

839 One potential method of formally weighing and combining evidence across evidence lines was described
840 during the workshop in a proof-of-concept application. This method captures the imperfections of each
841 type of evidence (both in a general sense as well as in a study-by-study sense) in the form of a Conditional
842 Probability Tables linking evidence of various types and qualities to hypotheses in a Bayesian Network. The
843 Bayesian Network is a means of computationally combining all the evidence, through application of Bayes’
844 Rule within the software tool, to yield intermediate and overall statements of the uncertainty in a
845 hypothesis linked to the various sources of evidence in the Network. The explicit linkages captured in the
846 Network allow for detailed sensitivity analysis both in a general sense (how strongly is an animal-based
847 test of type X linked to evidence of health outcomes Y) and in a specific sense (how strongly does the
848 overall conclusion of carcinogenicity for substance A depend on the quality score applied to study Z?).

849 For exposure assessment, with some effort, quantitative estimates of uncertainty can be readily combined
850 (e.g., through Monte Carlo simulation or other methods of propagating uncertainty) from the
851 uncertainties in individual quantitative components {contaminant levels, food intakes, product use,
852 occupational working conditions, inhalation rates, body weights) that are combined to generate estimates
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853 of dose. While non-trivial, conducting an uncertainty assessment within the step of exposure assessment
854 is supported by existing methods.

855 Dose-response assessment is an area where recent advances may be considered the most dramatic. The
856 availability of software tools to enable dose-response assessment, including capturing uncertainty in the
857 process, has been an important contribution. Efforts to harmonize non-cancer and cancer dose-response
858 assessment into a formal and quantitative process have made significant progress and are now widely
859 applicable with supporting publicly available tools (see 8.2 below; Chiu et al., 2018). The ability to consider
860 varying levels of severity in a quantitative way is another important consideration in removing uncertainty
861 that stems from the relative vagueness in the treatment of severity has been considered in the traditional
862 minimally quantitative dose-response approaches (see 6.2.5 above; Sand et al., 2018).

863 The risk characterization step of risk assessment integrates insights from the hazard identification,
864 exposure assessment and dose-response steps to generate overall estimates of risk and uncertainty
865 surrounding those estimates. With recent advances in the treatment of dose-response assessment, the
866 ability to render a more complete characterization of uncertainty in risk estimates should be enabled. The
867 inclusion of uncertainty in causality aspects of hazard identification in an integrated way may be the most
868 challenging to render and to communicate.

869 8.2 The IPCS approach to quantitative uncertainty analysis

870  Asnoted above, the RfV and similar approaches to quantitative synthesis suffer from some key limitations,
871 many of which have been identified by several National Academies reports (National Research Council
872 (US) Committee on Improving Risk Analysis Approaches Used by the US EPA, 2009; National Research
873 Council (US) Committee on Risk Assessment of Hazardous Air Pollutants, 1994). For instance, the way in
874  which RfV have traditionally been derived characterize neither the degree of residual risk that may be
875 present nor the shape of the dose-response curve for adverse effects. This is because the RfV is usually
876 obtained by identifying a NOAEL of intake from an experimental study {predominantly animal studies),
877 and then dividing this intake level by a number of “uncertainty factors” to account for limitations in the
878 data. The most commonly applied uncertainty factors are a factor of 10 to address differences between
879  experimental animals {UF,) and a second factor of 10 to address variability among humans (UFy). This
880 “NOAEL divided by 100" concept dates back to 1950s in the context of FDA regulation of food additives
881 {Lehman, 1954). Each of these components — the NOAEL, UF,, and UFy — is assumed to be

882 “conservative” in the sense of erring on the side of protecting public health, but without much specificity
883 as to “how conservative” they actually are (WHO/IPCS, 2014). For instance, with respect to the NOAEL, it
884 is assumed that the severity of effects at this exposure level are negligible, but the extent to which this is

885  true depends on the endpoint examined and the statistical power of the study {(Crump, 1984; EPA, 2012).
886 For UF,, it is assumed that humans are generally no more than 10-fold more sensitive than the
887 experimental animal species, but it is unclear at what confidence level this 10-fold factor is supposed to
888 be (90%, 95%, 99%7?). Similarly, for UFy, it is assumed that individuals more susceptible to toxicity are no
889 more than 10-fold more sensitive than more typical individuals. Here, there are two ambiguities: first,
890 like UF,, the confidence level of this 10-fold factor is unclear; 90%, 95%, 99%? Second, it is unclear what
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891 “susceptible” means in terms of the more sensitive tail of the population distribution; 5%, 1%, 1 in a
892 million?

893 More recently, the World Health Organization/International Program on Chemical Safety (WHO/IPCS) had
894 developed a guidance document describing a “probabilistic” framework that results in substantially better
895 characterization of the intake-response for adverse effects (W. A. Chiu & Slob, 2015). The key concept
896 underlying the WHO/IPCS approach is that the goal of deriving quantities like the reference dose (RfD) is
897 a “target human dose” HD/, defined as to estimated human dose (or intake) at which effects with
898 magnitude M occur in the population with an incidence /, along with an associated confidence interval
899 (Figure 5A).

900

NOAEL x DAF

Magnitude of response

:
Intake
01

[
:

“Target human dose,” HD,/, defined as to estimated human
dose (or intake) at which effects with magnitade M ez, 1902
occur in the population with an incidence 7 (e.g., 1%), along
with an associated confidence interval. a03

904 Figure 5. Summary of probabilistic approach to characterize quantitative uncertainty and variability in
905 dose-response assessment. A) llustration of the concept of the “human target dose,” HD,/, which
306 replaces traditional toxicity values such as the Reference Dose (RfD). B) General approach to deriving HD,,/
307 probabilistically, in comparison to deriving a traditional deterministic RfD. For additional details, see WHO
908  (2014) and Chiu and Slob (2015).

909  The derivation of the HDy' can be summarized into the following steps (illustrated in Figure 5B):

910 e Replace the NOAEL with so-called “benchmark dose (BMD) modeling.” The limitations of the
911 NOAEL as a starting point for toxicological risk assessment have been recognized for decades
912 (European Food Safety Authority, 2015; National Academies of Science, 2001; EPA, 1995, 2012;
913 WHO/IPCS, 2009), and it is generally accepted that the BMD, introduced by Crump (1984), is more
914 scientifically appropriate. The BMD is the dose associated with a specific size of effect, the
915 benchmark response (BMR) [we use M, for magnitude of effect, to denote this value]. The BMDy
916 is estimated, with associated confidence interval/statistical distribution, by statistical model
917 fitting to dose-response data. In this way, it provides information that the NOAEL does not
918 regarding the nature and severity of the adverse effects under consideration, as well as the
919 precision with which the associated intake level can be estimated.
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920 e Replace interspecies UF, with results from mathematical/computational modeling. The
921 approaches for replacing UF, all involve disaggregating it into two components. The first
922 component is related to dosimetry, denoted as dosimetric adjustment factor (DAF), to convert
923 experimental animal exposures to “human equivalent” exposures. If chemical-specific
924 toxicokinetic (TK) data are available, PBPK models have been used to derive the DAF (Corley et al,,
925 2012; Dorman et al., 2008; Schroeter et al., 2008; Teeguarden, Bogdanffy, Covington, Tan, &
926 Jarabek, 2008). Otherwise, generic approaches have been developed based on physiological
927 differences, such as allometric scaling by body mass, between experimental animals and humans
928 (EPA, 1994, 2011; West, 1999). A second component, which is denoted UF,, accounts for any
929 remaining (i.e., unknown) chemical-specific interspecies differences, such as due to
930 toxicodynamics (TD}. WHO/IPSC reviewed analyses of historical data on toxicity thresholds across
931 species and chemicals, deriving confidence intervals for the DAF and remaining interspecies
932 differences for oral intakes (WHO/IPCS, 2014).

933 e Replace human variability UF, with results from mathematical/computational modeling. In the
934 WHOY/IPCS framework, UF, is replaced with a value that depends on the I™ population percentile
935 of susceptibility, denoted UFy; (Chiu & Slob, 2015; WHO/IPCS, 2014). This quantity reflects TK and
936 TD differences between individuals at the median and the I percentile of the population
937 distribution. For TK, PBPK models have been used for specific substances to estimate the degree
938 of human variability. WHO reviewed previous analyses of historical data on TK and/or TD
939 variability across chemicals (WHOQO/IPCS, 2014), based on work by Hattis and colleagues (Hattis,
940 Baird, & Goble, 2002), and have recommend “default” factors (as probability distributions) that
941 can be applied.

942 ¢ Combine the newly defined BMD, UF,, and UF,, in a probabilistic manner to derive an intake-
943 response function and its uncertainty. The integration of BMD modeling, allometric scaling, and
944 historical TK/TD variability data across chemicals leads to the HDw' (Chiu & Slob, 2015; WHO/IPCS,
945 2014). The HDw' can then replace the UL and disaggregates “risk” into the distinct concepts of
946 magnitude of effect (M), incidence of effect (I}, and uncertainty {reflected in the confidence
947 interval). The HDw' can furthermore be mathematically “inverted” to derive an intake-response
948 function for a specified fraction | of the population (Chiu & Slob, 2015).

949  The resulting output is a two-dimensional distribution of intake-response functions: one reflecting human
950  variability in terms of I percentiles, and the other reflecting statistical uncertainty. By providing intake-
951 response functions rather than “bright lines,” changes in risk of adverse effects from changes in dose can
952 be quantified. This type of “risk-benefit” comparison would be infeasible under the traditional “NOAEL
953 divided by 100” approach, because there is no characterization of the gradient of the dose-response over
954 a wide enough range of doses. However, the approach to derive an HDy' would enable such comparison
955 to be made much more easily. Chiu and colleagues (2018) recently applied this approach to over 600
956 chemicals and 1,500 endpoints, demonstrating the feasibility of broadly implementing this approach in
957 chemical risk assessments.

958 9. Preliminary Evidence-Based Risk Assessment Framework

959  The overarching goal of this project was to develop an evidence-based risk assessment framework to
960  guide the conduct of evidence-based risk assessment, including assembling and synthesizing all relevant
961 data as discussed above. This document provides detailed guidance on each of the key steps involved in
962 conducting an evidence-based risk assessment and is of value to practitioners seeking to ensure that risk

28

ED_012964_00016936-00028



Evidence-Based Risk Assessment Framework

963 assessments are completed according to the highest possible scientific standards, and are conducted in
964 an open, transparent, and reproducible manner.

965 An important aspect of the framework is the distinction between the related steps of assembling and
966 synthesizing the evidence. Systematic review offers a powerful approach to assembling all relevant data
967 in support of the assessment, with objective inclusion/exclusion criteria and study quality assessment. In
968 the past, the selection of studies to be included in risk assessments has sometimes been a source of
969 controversy. By invoking current best practices in systematic review, it is expected that much of this
970 controversy can be circumvented.

971 Having agreed on the evidence base to support risk assessment, attention can then focus on qualitative
972 and possibly quantitative syntheses of the available information. At this stage, clear criteria for evaluating
973 the available data will serve to support data-driven determinations regarding the existence or otherwise
974 of a human health hazard. Should a human health hazard be identified using the criteria embodied in the
975 framework, methods for quantitative syntheses of the available data can then be applied, in cases where
976 the available data are sufficient to support an evidence-based estimate of potential population human
977 health risk and associated uncertainty.

978 An initial framework for the evaluation of all available evidence on the association between a particular
979 exposure and adverse outcome is presented in Figure 6. Although practitioners will be familiar with each
980 of the components of this framework, it may serve as a useful paradigm for ensuring consistency in
981 evidence-based risk assessment. Following problem formulation (an important starting point, but outside
982 the scope of the present framework), the first step is to assemble all relevant evidence relating to the
983 specific risk issue under consideration. As discussed, systematic review provides a powerful set of
984 methodologies for accomplishing this in a comprehensive and reproducible manner.

985 In the framework laid out in Figure 6, once all relevant evidence has been summarized, the volume of
986  evidence is assigned to one of three tiers: data-poor (Tier 1), limited data (Tier 2), or data-rich (Tier 3). In
987  the data-poor context, a decision is required as to whether the assessment should proceed to a formal
988 evaluation: should the data be judged inadequate to support a meaningful evaluation, key data gaps
989 should be identified and filled before proceeding.

990  Within the context of the present framework, the term ‘limited data’ (Tier 2) is used to represent at least
991 a minimal amount of data that would support a credible risk assessment. The term ‘data-rich’ (Tier 3)
992 represents the case in which considerable data is available from multiple sources (including human,
993 animal, and other experimental sources) to support a credible evaluation.

994 Orice it has been determined that the data are adequate to support assessment development (regardless
995 of whether the available evidence falls into Tier 1, 2 or 3), the next step is to conduct a qualitative synthesis
996 of the available data, resulting in a determination as to whether or not a human health hazard exists. This
997 is a non-trivial undertaking and will involve the application of explicit {likely context-specific) criteria for
998 hazard determination.
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999 Although such criteria have been elaborated for certain outcomes such as cancer (specifically those
1000 elaborated upon by IARC in the January 2019 update to the IARC monographs) (Samet et al., 2019), other
1001 criteria will need to be developed for other adverse outcomes. Lessons may be learned from current
1002 REACH guidance, which focuses on 11 broad adverse outcomes (Armstrong et al., 2020). The end result
1003 of the qualitative synthesis is a statement about the evidence for a causal association between the
1004 exposure and outcome(s) of interest. Should an inconclusive outcome be reached, outstanding data gaps
1005 should be noted and addressed for use in a future re-evaluation. Inits review of the U.S. EPAIRIS program,
1006 the NRC recommended categories of evidence that included “sufficient to infer a causal relationship”,
1007 “suggestive but not sufficient to infer a causal relationship”, “inadequate to infer the presence of a causal
1008 relationship”, and “suggestive of no causal relationship (NRC, 2014, p.94). Other investigators have also
1009 suggested simplified evidence categorization schemes, including Wigle and colleagues (2008) and Krewski
1010  and colleagues (2017) who proposed categories for classifying evidence as “sufficient”, “limited” or
1011 “inadequate”.

1012 Should the qualitative synthesis conclude that a human health hazard exists, a quantitative synthesis of
1013 the available data can be attempted, with the goal of characterizing the level of risk, and attendant
1014 uncertainty, in quantitative terms. Recent trends in data aggregation have provided powerful new
1015 approaches to quantitative data synthesis, including techniques such as categorical regression that permit
1016 the inclusion of quantitative data from multiple sources and on multiple endpoints into a single dose-
1017 response analysis. It is important to note that the successful completion of a qualitative synthesis of the
1018 available data does not guarantee that the data can support a meaningful quantitative synthesis; a
1019 guantitative synthesis will only be possible when there is reliable data on the dose-response relationship
1020 between the agent and outcome of interest from one or more sources.

Systematic review

Evidence Stream Data Quality Assessment,

Evidence Integration

Exposure-response Analysis,
Meta-analysis, Cateporical Regression

Risk Benchmarks
1021

1022  Figure 6. Preliminary evidence-based risk assessment framework
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1023  10. Summary of Workshop Deliberations

1024 Experts from the field of evidence integration met at a workshop hosted by the University of Ottawa on
1025 December 17-18, 2018 to discuss the development of an evidence-based risk assessment framework. The
1026  workshop benefitted from strong attendance from government, academia and industry.

1027  The workshop agenda (provided in full in the Supplementary Material) covered a range of topics relevant
1028  torisk science and evidence integration, from emerging trends and new methodologies to approaches for
1029 putting evidence integration into practice.

1030 During the second day of the workshop, participants were divided into breakout groups, and tasked with
1031 addressing four key questions relating to the development of a framework for evidence-based risk
1032 assessment. The four discussion areas, described in additional detail below, were:

1033 1. Lessons learned from previous experience
1034 2. Benchmarks of good practice

1035 3. Problem formulation and data requirements
1036 4. Potential challenges

1037  10.1 Breakout Group 1: Lessons Learned from Previous Experience

1038  This breakout group explored what can be learned from previous experience in the development of an
1039 organizing framework for evidence integration. Participants explored past successes and challenges, as
1040  well as opportunities for future improvement.

1041  The iterative development and refinement of systematic and transparent approaches for data collection,
1042 screening and abstraction were identified as key areas of strength where insights could be drawn from
1043 past experience. Participants noted, however, that guidance tends to be less clear for mechanistic data.
1044  Also, there was a discussion of the need to preserve evidence and decision context throughout the risk

1045 assessment process.

1046 It was also suggested that the ability to both summarize individual lines of evidence and use insights from
1047 one line to inform judgements for another had improved over time. This was driven in part by best
1048 practices in the clinical and pharmaceutical industry and participants suggested that similar efforts for
1049 evidence-based risk assessment could benefit from building upon this foundation.

1050 Participants noted that “getting the data right does not mean getting the answer right”. In other words,
1051  while a systematic approach is essential, both subject matter expertise and public review should be
1052 included as necessary components of the risk assessment process. Similarly, transparency should not be
1053 conflated with objectivity, and both decisions and their impacts on the assessment process should be
1054 made explicit.

1055 Moving forward, participants recommended a focus on developing discrete steps for evidence integration
1056  that record and summarily present choices, assumptions and justifications. They also recommended the
1057 development of reporting guidelines for author publication of individual studies to facilitate their
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1058 incorporation in risk assessments. Lastly, participants advocated for continued knowledge-sharing and
1059 collaboration in order to foster best practices and reduce duplication of work.

1060  10.2 Breakout Group 2: Benchmarks of Good Practice

1061  This breakout group explored examples of previous evidence integration efforts in an effort to identify
1062 examples of best practices. Participants sought to address this topic by identifying both useful frameworks
1063 and relevant case studies to examine their application in practice.

1064  With regard to applicable frameworks, the participants made note of several of the frameworks discussed
1065 in earlier sections of this workshop report. One framework that received particular attention was the
1066 updated Whaley literature review appraisal toolkit, which participants suggested could be useful as a
1067 mechanism for refining best practices and evaluation criteria for systematic reviews.

1068  The case studies discussed were intended to explore various systematic review frameworks, highlighting
1069 strengths and areas that could be improved moving forward. Participants compared numerous case
1070  studies, such as OHAT immunotoxicity {involving human, animal and mechanistic data), Health Canada
1071 data-poor case studies, and EPA RIS chemical assessments.

1072 From this discussion, participants developed three key recommendations for future consideration.

1073 1. Prospective case studies could be considered as an avenue for advancing discussion of best
1074 practices

1075 2. Empirical studies of how to reduce risk of bias could further increase the confidence with which
1076 risk assessment findings could be interpreted

1077 3. Efforts to evaluate the impact of different levels of literature review comprehensiveness could be
1078 informative in guiding best practices and pragmatism in review efforts

1079  10.3 Breakout Group 3: Problem Formulation and Data Requirements

1080  This breakout group explored how problem formulation can be used to define data requirements for
1081 evidence-based risk assessment, as well as how contextual factors may impact these requirements.
1082 Participants strongly agreed that risk assessment data requirements are context-dependent and focused
1083 their discussion on the use of GRADE to respond to research questions with varying degrees of urgency.

1084 Participants examined how GRADE can be applied to assess research questions across different
1085  timescales, including emergency response {within hours), urgent response {1-2 weeks), rapid response
1086 (1-3 months) and routine response (more than three months). The types of evidence incorporated, and
1087 risk of bias associated with findings would vary across these categories, demonstrating the context-
1088 specific nature of data requirements (and flexibility of the GRADE process). While GRADE principles can
1089 be applied to results of both systematic and expedited reviews, non-systematic reviews may often lead to
1090  greater uncertainty in the interpretation of review findings.
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1091  10.4 Breakout Group 4: Potential Challenges

1092  This breakout group discussed what challenges may arise in efforts to strengthen evidence-based risk
1093 assessment. Participants considered risk assessment within the broad categories of evidence retrieval
1094 (data collection), integration within a stream of evidence and integration across evidence streams.

1095  Within the context of evidence retrieval, participants highlighted the need to be comprehensive without
1096 diluting the findings of the review. They identified the need to improve the quality of evidence that
1097 informs risk assessment, and identified knowledge translation, data sharing and methodological
1098 standardization as possible avenues for overcoming this challenge.

1099 In assessing individual lines of evidence, participants discussed challenges relating to the weighting of
1100  difference sources (such as among several animal models) and reaching agreement on the “quality” of
1101 information available. Specifically, they discussed what limitations should be viewed as more problematic
1102  than others.

1103 When integrating evidence across evidence streams, participants discussed challenges driven by
1104 uncertainty about the informative value of different evidence. Integration of qualitative and quantitative
1105 data can be particularly challenging in this regard, and participants proposed standardized metrics and
1106 probabilistic approaches as potential avenues for overcoming these difficulties.

1107 At a general level, authors suggested that key challenges included building confidence in the risk
1108 assessment process, synthesizing different types of evidence, and navigating inter-reviewer
1109 disagreements and judgements. They suggested that complementary evidence could be used to support
1110  generalizations of risk assessment findings, and that evidence integration at different levels (e.g., to
1111 understand the biological plausibility of mechanistic data) could be of value.

1112 11. Conclusion

1113  The overarching objective of this initial workshop was to explore the development of an evidence-based
1114  framework for risk assessment. Participants at the workshop discussed issues relating to recent advances
1115 in risk science, new methodologies in evidence evaluation, approaches for qualitative and quantitative
1116 evidence synthesis, and putting evidence integration into practice.

1117 A preliminary framework was distributed in advance of the workshop and refined based discussion and
1118 debate among the workshop participants. The framework presents a practical approach to evidence
1119 evaluation and synthesis designed to ensure that the relevant evidence for human health risk assessment
1120 is considered in a comprehensive and objective manner. The framework relies on current best practices
1121 in systematic review to summarize human, animal and experimental evidence relevant to the risk issue
1122 under consideration. With the recent advances in systematic review methodology and powerful software
1123 to support the conduct of systematic review, the relevant evidence can be readily summarized in a
1124 comprehensive and reproducible manner.

1125 Once the available evidence has been summarized, evidence can be used to conduct a qualitative
1126 synthesis of the available data. Application of appropriate integration approaches can be used for hazard
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determination. If a human health hazard is identified, a quantitative synthesis of the data can then be
undertaken to characterize population health risks and uncertainties in quantitative terms. Both the
qualitative and quantitative syntheses will require adequate data to support these syntheses, with key
data gaps being identified and filled as relevant to the context of the risk assessment.

Elaborating on the evidence-based risk assessment framework proposed here will require more in-depth
consideration of the criteria to be applied in conducting both qualitative and quantitative synthesis of the
data. Such criteria will be proposed in a subsequent phase of this work. Upon completion of the evidence-
based risk assessment framework, case study prototypes could be conducted to evaluate its use in
practice. A follow-up workshop is currently being planned to flesh out the preliminary framework for

evidence-based risk assessment in more detail.
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Supplementary Material
Development of an Evidence Based Risk Assessment Framework
Workshop Agenda

Monday, December 17', 2018

Welcome and Overview

8:15am-8:20 am Guy Levesque, Associate Vice President, University of Ottawa Welcome
Welcome
8:20 am — 8:30 am Daniel Krewski, University of Ottawa

Risk science in the 21 century: Overview

Session 1: Recent Advances in Risk Science: Including New Approach Methodologies in Weight of
Evidence Evaluation

This session will take stock of recent scientific developments that will support evidence-based risk
assessment, including new approach methodologies (NAMs).

Chair: Thomas Hartung, Johns Hopkins University

8:30-8:55 am Maureen Gwinn, US EPA

Current Status of New Approach Methodologies
8:55am—9:20 am Patience Browne. OECD

Predictive value of in vitro assays
9:20 am —9:45 am Andrew Rooney, NIEHS

Incorporating information from new approach methodologies in weight of
evidence evaluation)

9:45 am — 10: am General discussion

10:00am —10:30 am  Break

Session 2: Summarizing the Evidence

This session will focus on methods for summarizing all relevant data to be included in an evidence-based
risk assessment. Methods in systematic review will be examined, along with current approaches to data
quality scoring.

Chair: Jeff Lewis, Exxon Mobil Biomedical Research

10:30 am —10:55 am  Juleen Lam, Cal State East Bay

Integrating multiple evidence streams
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10:55 am —-11:20 am

11:20 am - 11:45 am

11:45am —12:00 pm

12:00 pm — 1:00 pm

Thomas Hartung, Johns Hopkins

Systematic review of toxicological data

Charlotte Bertrand, US EPA

Quality scoring of human, animal, and in vitro data

General discussion

Lunch
Demonstration of Bayesian Weight of Evidence Decision-Support Tool

Moez Sanaa, ANSES and Greg Paoli, Risk Sciences International

Session 3: Qualitative Data Synthesis

The first step in evidence-based risk assessment is the determination of whether or not a hazard exists.
This involves a weight of evidence evaluation of all relevant information in order to reach a decision on
whether the available data supports the existence of a human health hazard.

Chair: Kristina Thayer, US EPA

1:00 pm —1:25 pm

1:25 pm - 1:50 pm

1:50 pm —2:15 pm

2:15 pm —2:30 pm

2:30 pm - 3:00

Kurt Straif (confirmed, IARC

The IARC Monographs Programme of identification of carcinogenic hazards to
humans

Holger Schiinemann, McMaster

Use of GRADE in evidence integration

Andrew Kraft, US EPA

Current and future EPA practices in systematic review

General discussion

Break

Session 4: Quantitative Dato Synthesis

Once a hazard has been identified on the basis of the available evidence, a quantitative assessment of risk
and exposure-response may be undertaken. This session will focus on new methodologies for quantitative
synthesis of data from multiple sources, including synthesis of data on diverse toxicological endpoints.

Chair: Greg Paoli

3:00 pm —3:25 pm

3:25 pm —=3:50 pm

Salomon Sand, Swedish National Food Agency
New approaches for quantitative combining of data from multiple sources
Don Mattison, Risk Sciences International

Quantitative synthesis of neurotoxicity data on manganese using categorical
regression
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3:50 pm - 4:15 pm Weihsueh Chiu, Texas A&M University

New approaches to characterizing uncertainty in risk assessment
4:15 pm —4:40 pm Katya Tsaioun, Johns Hopkins University

In vitro predictions of drug induced liver injury

4:40 pm — 5:00 pm General discussion

5:00 pm Adjourn

Tuesday, December 18", 2018

8:30 am — 9:00 am Summary of Day 1

Daniel Krewski, University of Ottawa

Session 5: Putting Weight of Evidence into Practice

In order to guide discussions about considerations involved in the practical implementation of weight of
evidence, this session will provide an overview of current approaches within EFSA and Health Canada.

Chair: Maureen Gwinn, EPA

9:00 am—9:25 am Elisa Aiassa, Laura Martino and Caroline Merten, EFSA
Evidence integration: an EU perspective

9:25 am -~ 9:50 am Tara-Barton Maclaren, Health Canada
Health Canada’s evolving framework for evidence synthesis

10:00am —10:30 am  Break

The remainder of the meeting will be held in closed session.

Session 6: Breakout Groups

Participants at the workshop will be assigned to breakout groups to address a series of key questions
relating to the development of an evidence-based framework for risk assessment. {Questions developed
by the Steering Committee.)

Moderator: Tara Barton-Maclaren, Health Canada
10:30 am —12:00 pm  Parallel Breakout Group Discussions
Group 1: Lessons learned from previous experience

Chair: Lorenz Rhomberg, Gradient Corporation

Rapporteur: Patrick Saunders-Hastings, Gevity
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12:00 pm -~ 1:00 pm

1:.00 pm —=2:00 pm

2:00 pm —2:30 pm

2:30 pm —3:00 pm

Group 2: Benchmarks of good practice
Chair: Greg Paoli, Risk Sciences International

Rapporteur: Maureen Gwinn, US EPA

Group 3: Problem formulation and data requirements
Chair: Robert Baan, IARC (retired)
Rapporteur: Kris Thayer, US EPA

Group 4: Potential challenges
Chair: Thomas Hartung, Johns Hopkins

Rapporteur: Rebecca Morgan, McMaster University
Lunch

Breakout Group Reports

Moderator: Tara Barton-Maclaren, Health Canada
Synthesis of Breakout Group Reports

Daniel Krewski, University of Ottawa

Break

Session 6: General Discussion and Next Steps

This session will include a general discussion of key themes identified at the workshop and possible
components of an evidence-based risk assessment framework. (Steering Committee members will be

asked to provide their perspectives on future directions, with input from participants.)

Chair: Thomas Hartung, Johns Hopkins

3:00 pm —3:30 pm

3:30 pm —4:00 pm
4:00 pm —4:30 pm

4:30 pm

Opening 5-minute presentations by Steering Committee members:

Tara Barton-Maclaren, Health Canada; Thomas Hartung, Johns Hopkins
University; Daniel Krewski, University of Ottawa; Kristina Thayer, US EPA; Jeff

Lewis, Exxon Mobil Biomedical Research.
General discussion
Conclusion

Daniel Krewski, University of Ottawa

Adjourn
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